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BACKGROUND: Population studies support the adverse associations of air pollution exposures with child behavioral functioning and cognitive perform-
ance, but few studies have used spatiotemporally resolved pollutant assessments.
OBJECTIVES: We investigated these associations using more refined exposure assessments in 1,967 mother–child dyads from three U.S. pregnancy
cohorts in six cities in the ECHO-PATHWAYS Consortium.
METHODS: Pre- and postnatal nitrogen dioxide (NO2) and particulate matter (PM) ≤2:5 lm in aerodynamic diameter (PM2:5) exposures were derived
from an advanced spatiotemporal model. Child behavior was reported as Total Problems raw score using the Child Behavior Checklist at age 4–6 y.
Child cognition was assessed using cohort-specific cognitive performance scales and quantified as the Full-Scale Intelligence Quotient (IQ). We fitted
multivariate linear regression models that were adjusted for sociodemographic, behavioral, and psychological factors to estimate associations per 2-
unit increase in pollutant in each exposure window and examined modification by child sex. Identified critical windows were further verified by dis-
tributed lag models (DLMs).

RESULTS: Mean NO2 and PM2:5 ranged from 8:4 to 9:0 ppb and 8:4 to 9:1 lg=m3, respectively, across pre- and postnatal windows. Average child
Total Problems score and IQ were 22.7 [standard deviation (SD): 18.5] and 102.6 (SD: 15.3), respectively. Children with higher prenatal NO2 expo-
sures were likely to have more behavioral problems [b: 1.24; 95% confidence interval (CI): 0.39, 2.08; per 2 ppb NO2], particularly NO2 in the first
and second trimester. Each 2-lg=m3 increase in PM2:5 at age 2–4 y was associated with a 3.59 unit (95% CI: 0.35, 6.84) higher Total Problems score
and a 2.63 point (95% CI: −5:08, −0:17) lower IQ. The associations between PM2:5 and Total Problems score were generally stronger in girls. Most
predefined windows identified were not confirmed by DLMs.
DISCUSSION:Our study extends earlier findings that have raised concerns about impaired behavioral functioning and cognitive performance in children
exposed to NO2 and PM2:5 in utero and in early life. https://doi.org/10.1289/EHP10248

Introduction
Early brain morphology in humans begins in the third week post
conception and rapidly develops by midgestation.1–3 Ongoing
structural change and functional development continue for an
extended period postnatally until early adulthood.1,4,5 Subtle dis-
turbances in early life may interfere with the normal trajectory of
brain development and cause subsequent functional impairment.2

Children with behavioral and cognitive impairment early in life
may have persistent problems, including increased risk of sub-
stance abuse, violent behavior, and depression in adolescence

and/or adulthood,6 as well as diminished academic performance
and economic productivity over their life span.7,8 Therefore,
identifying modifiable factors on which to intervene is a research
priority. In recent decades, growing evidence has demonstrated
the human neurodevelopmental toxicity of common air pollu-
tants, including nitrogen oxides (NO2), particulate matter (PM)
≤2:5 lm in aerodynamic diameter (PM2:5), and polycyclic aro-
matic hydrocarbons (PAHs), on the central nervous system
(CNS) with subsequent behavioral and cognitive impacts.9–11

Air pollutants can invade deep in the lungs, trigger oxidative
stress, and induce systemic inflammation in pregnant women.12–14

Circulating markers pass the maternal–fetal blood barrier and pro-
mote chronic inflammation and neurodegeneration in the fetus,15–17

with evidence of longer-term impact on offspring neurodevelop-
mental outcomes.18–20 Postnatal air pollution exposures may affect
children’s CNS more directly. Besides penetrating into the lungs,
inhaled pollutants may also translocate along the olfactory nerve
into the olfactory bulb, promote diffusion of oxidative stress
and inflammatory markers across the impaired blood brain barrier,
and inducemicroglial activation on entering the CNS.21–24 Previous
population studies in the United States,25–28 Europe,29–31 and
Asia32–34 have consistently linked air pollution exposures in both
pre- and postnatal windows to poorer neurodevelopmental out-
comes during early to late childhood. Nevertheless, exposure data at
a small scale are scarce and available in only a few studies,28,32,35–38

four of which estimated trimester specific associations.28,32,36,37 In
these previous studies, various pollutants (mainly NO2 and PM)
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were estimated from a number of exposure assessment methods,
including conventional geographic information system-basedmeth-
ods (e.g., land use regression), direct measurements from residential
ambient monitors, and biomarkers of exposure.10 The use of spatio-
temporally resolved air pollution assessment across different devel-
opmental windows in a multiregion sample is limited. Other
methodological limitations in prior studies include inadequate
assessment of confounding, failure to consider outcomes across
neurodevelopmental domains, and inability to disentangle the asso-
ciations from distinct exposure windows due to limited statistical
power and/or air pollution predictions with a low temporal
resolution.

In this study, we further the current body of literature and our
own recent analyses27,39 of NO2 and PM10 with child behavioral
problems and intelligence quotient (IQ). Specifically, here we
expand the study population to include three pregnancy cohorts
in the United States, use spatiotemporally resolved predictions of
NO2 and PM2:5, and evaluate several sensitive developmental
periods in both pre- and postnatal windows. We hypothesized
that children with higher pre- and/or postnatal exposures to NO2
and PM2:5 would have more behavioral problems and a lower IQ.
In addition, research has identified several sex differences in neu-
rodevelopment, including morphological, physiological, and
chemical differences.40 Several lines of evidence suggest that the
air pollution–child neurodevelopment association may be sex-
specific, possibly with a more pronounced relationship in
boys.25,30,35,41–43 However, heterogeneities in study design of
previous studies, including varied exposure and outcome assess-
ments, have hampered the ability to draw firm conclusions
regarding differential vulnerability by sex. Hence, we also exam-
ined whether the associations of interest differed by child sex in
the current study.

Methods

Study Population
As part of the Environmental Influences on Child Health Outcomes
(ECHO) study, we aimed tomaximize power in the current analysis
to estimate effects from air pollution exposures on child behavioral
and cognitive outcomes and explore nuanced research questions of
effect modification by child sex by pooling all three U.S. pregnancy
cohorts that compose the ECHO-PATHWAYS Consortium: the
Conditions AffectingNeurocognitive Development and Learning in
Early Childhood (CANDLE) study, the Infant Development and
Environment Study (TIDES), and the Global Alliance to Prevent
Prematurity and Stillbirth (GAPPS). Based in Shelby County,
Tennessee, the CANDLE study initially aimed to identify risk fac-
tors for child neurodevelopment.44Womenwere considered eligible
if they were 16–40 y old, had medically low-risk singleton pregnan-
cies, and planned to deliver at a participating study hospital. From
2006 to 2011, 1,503 women were recruited in their second trimester
from either the general community or affiliated medical group clin-
ics. More than three quarters of the enrolled participants (n=1,143)
completed a clinic visit when the resulting children were age 4–6 y.
The TIDES study was designed to examine the impacts of exposure
to endocrine disrupting chemicals, notably phthalates, on child
health and development.45 From 2010 to 2012, recruitment com-
menced in academic medical centers in four cities: San Francisco,
California; Rochester, New York; Minneapolis, Minnesota; and
Seattle, Washington. Pregnant women in their first trimester were
considered eligible if they were age 18 y or older, were English-
speaking, had singleton pregnancies without any serious threat, and
planned to deliver at a participating study hospital. There were 749
women who were retained in the study throughout the pregnancy
and delivered a live birth, and 551 mother–child dyads completed

the 6-y visit. Last, the GAPPS study was established to inform
evidence-based treatments and interventions to reduce preterm birth
and stillbirth through development of a biorepository (www.gapps.
org). Familieswho had participated in theGAPPS study andmet eli-
gibility criteria (consented to contact for future study; had prenatal
questionnaire data and biospecimens available; child age was eligi-
ble for the 4–6-y visit) were invited to participate in the ECHO-
PATHWAYS Consortium. From July 2017 to April 2020, 439
mother–child dyads from Seattle and Yakima, Washington, were
enrolled and completed the follow-up visit at child age 4–6 y.

The current study included 1,967 CANDLE, TIDES, and
GAPPS children who completed behavioral and cognitive assess-
ments at clinical visits at 4–6 y of age and had valid residential
addresses in the pre- and/or postnatal windows reported by
parents. Each woman provided informed consent upon enroll-
ment in original cohorts. This analysis uses previously collected
data from the three cohorts and was approved by the Human
Subjects Division at the University of Washington.

Child Cognitive and Behavioral Measurements
Child behaviors were assessed using the Child Behavior
Checklist (CBCL), administered at a visit that occurred at age
4–6 y. The CBCL involves caregiver reporting of a wide range of
emotional and behavior problems in children and is broadly used
in both research and clinical settings.46,47 One of two CBCL ver-
sions were administered, depending on the child’s age: the CBCL
preschool form (ages 1.5–5 y)48 or the CBCL school-age form
(ages 6–18 y).49 All CANDLE participants completed the pre-
school form, all TIDES participants completed the school-age
forms, and GAPPS families completed a mix of both forms. The
preschool form includes report of the frequency of 99 child
behaviors in the past 2 months, whereas the school-age form
includes 112 behaviors in the past 6 months. Caregivers rate these
items on a scale of Not True (0), Somewhat or Sometimes True
(1), to Very True or Often True (2). Although additional behav-
iors appropriate for children up to age 18 y are added in the
school-age form, given that the children in our study were essen-
tially in the same developmental stage, caregivers reported simi-
lar types and counts of behaviors across forms. Therefore, we
combined the data collected by two CBCL forms. Because the
standardized t-scores estimated from these two CBCL forms dif-
fer in whether child sex was adjusted,50 we computed the raw
score for the Total Problems scale as the primary outcome and
further calculated the standardized z-score using all ECHO-
PATHWAYS participants with behavioral problems measured by
either CBCL form as the reference to verify our findings.

Child cognitive performance was examined at the same visit as
the behavior measurement. The IQs of the CANDLE, TIDES, and
GAPPS childrenwere assessed using the Stanford-Binet Intelligence
Scales, Fifth Edition (SB-5),51,52 the abbreviated five-subtest version
of the Wechsler Intelligence Scale for Children, Fifth Edition
(WISC-V),53,54 and the Wechsler Preschool & Primary Scale of
Intelligence, Fourth Edition (WPPSI-IV, age 4:0–7:7 version),55,56

respectively. The three IQ batteries are examiner-administered,
highly reliable, and valid measures of intellectual and cognitive abil-
ities in childhood. All examiners were trained on the administration
and scoring by licensed psychologists. They participated in didactic
instruction and guided practice, interrater reliability exercises, as
well as weekly supervision by psychologists post training.
Considering that Full-Scale IQ is less frequently included in large
population studies due to its heavy burden on examiners and partici-
pants, we aimed to maximize use of these data as others have before
us.57–59 In CANDLE, full-scale IQ was derived from the 10 subtests
in the SB-5 addressing five cognitive factors with verbal and nonver-
bal tests for each factor: knowledge, fluid reasoning, quantitative
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reasoning, visual-spatial processing, and working memory. In
TIDES, Full-Scale IQ was estimated using the Tellegen and Briggs
formula,60 incorporating five WISC-V domains—verbal compre-
hension, visual spatial, fluid reasoning, working memory, and proc-
essing speed. The calculation of Full-Scale IQ from theWPPSI-IV in
GAPPS included scores in the five cognitive domains, similar to the
fiveWISC-V domains in TIDES. Although the specific tests used to
capture different domains of cognitive performance may vary across
the IQ instruments, full-scale IQ provides a standardized metric of
overall performance across all the subtests, with a high correlation
across instruments.61

Air Pollution Assessments
Detailed residential addresses were collected from CANDLE par-
ticipants at enrollment and updated at each subsequent point of
contact. The availability of address data varied by site in the
TIDES study: all participants reported residential addresses at
enrollment, at the age 4 y visit, and at the age 6 y visit; participants
in Rochester and San Francisco were contacted for one more
update between enrollment and the age 4 y visit. GAPPS partici-
pants were asked to provide comprehensive address histories at the
age 4–6 y visit retrospectively from enrollment to present. Point-
based NO2 and PM2:5 exposures were estimated from a spatiotem-
poral model on a 2-wk scale.62 This model used monitoring data
from regulatory networks, further enhanced with air pollution
measurements from intensive research cohort-specific monitors. A
geographic information system was used to identify covariates rep-
resenting land use characteristics that could reflect spatial variability
in air pollution distributions, and the dimension-reduced regression
covariates were obtained using partial least squares from more than
400 geographic variables. The space–time features of pollution con-
centrations were decomposed into spatially varying long-term aver-
ages, spatially varying seasonal and long-term trends, and spatially
correlated but temporally independent residuals, and these compo-
nents were fitted jointly in a likelihood-based spatiotemporal exten-
sion of universal kriging. We estimated biweekly NO2 and PM2:5
predictions from region-specific models (three regions for the NO2
models and nine regions for the PM2:5 models), and averaged the ex-
posure concentrations over each trimester, the whole pregnancy,
and the two postnatal windows from childbirth to 2 y old and from 2
to 4 y old. The 2–4-y PM2:5 estimates were missing in 150 partici-
pants whose 4-y-old birthday was beyond the prediction window of
the spatiotemporal model (30 December 1998 to 4 July 2017).
Moving was accounted for by calculating the time-weighted aver-
ages of NO2 and PM2:5 in the relevant windows based on the
reported move date. For families who moved between two points of
contact and did not report a move date, we estimated the move date
as the midpoint of the two contact dates.We refer readers to a recent
paper by Kirwa et al. (2021)63 for a thorough discussion of different
air pollution predictionmodels.

Covariates
Several indicators for maternal, child, and family characteristics,
including multilevel social determinants, were harmonized across
cohorts.Maternal characteristics included age at enrollment; region-
and inflation-adjusted household annual income64; householdmem-
bers (2–3 vs. 4 vs. 5 vs.≥ 6); education level (<high school vs. high
school/Graduate Equivalency Diploma vs. college/technical school
vs. graduate or professional degree); marital status (married/living
as married vs. single/living as single); pregnancy smoking (smoker
vs. nonsmoker); pregnancy alcohol consumption (ever vs. never);
pregnancy vitamin supplement intake (ever vs. never); prepreg-
nancy body mass index (BMI); IQ measured by Wechsler
Abbreviated Scale of Intelligence [the composite score of four

subtests (Vocabulary, Similarities, Block Design, and Matrix
Reasoning) from the first edition65 in CANDLE, the composite
score of two subtests (Vocabulary and Matrix Reasoning) from the
second edition66,67 in TIDES and GAPPS]; depression, assessed at
the visit when child outcome assessments were taken, by either the
Center for Epidemiologic Studies Depression Scale (CES-D)68 or
the Patient-Reported Outcomes Measurement Information System
(PROMIS)69 and quantified as t-scores; and breastfeeding practice
(ever vs. never). Child characteristics included age at cognitive and
behavioral assessments; sex (male vs. female); birth order (first born
vs. not first born); birth year; and secondhand smoking exposure
(anyone living in the child’s home smoked vs. no one smoked). The
indices in two of the three domains of the Childhood Opportunity
Index (COI) were calculated based on the residential address history
in pre- and postnatal windows: A larger index in the social and eco-
nomic subscale reflected higher neighborhood-level socioeconomic
status (SES), and a larger index in the educational subscale indicated
better early childhood education quality.70We also included parent-
reported child race (White vs. Black, vs. others) as a confounder,
given that race is not only a proxy for racial residential segregation,
which directly associates with air pollution exposures, but also a
strong predictor of socioeconomic position that results in health dis-
parities.71 American Indian/Alaska Native, Asian, and Native
Hawaiian/other Pacific Islanders were grouped together to improve
statistical power and enhance the data harmonizability across cohorts.

Statistical Analyses
We conducted descriptive analyses in the entire sample and by
cohort to summarize the characteristics of the participants, the air
pollution exposures, and the child cognitive and behavioral
assessments. Linear regressions with robust standard errors were
performed to estimate the associations of individual exposures
(PM2:5 or NO2) in each window with child Total Problems score
and IQ based on observations with complete data pooled from
three cohorts. To enable comparisons with studies with relatively
low air pollution levels and variabilities, effect estimates were
rescaled to a 2-unit incremental increase, which approximates the
interquartile ranges (IQRs) for long-term exposures in the six
study sites. Based on substantive knowledge from existing litera-
ture, we developed a staged adjustment approach comprising
three models, allowing us to explore the influence of increasing
levels of adjustment on results. We further created a directed
acyclic graph (DAG; Figure S1) to help visualize the relation-
ships. Model 1 (the minimal model) controlled for basic demo-
graphics—child sex, child age at outcome assessments, and study
site. An indicator of CBCL form was additionally included in the
analysis of Total Problems score. We defined Model 2 as the pri-
mary model, which was further adjusted for major confounders
or precision variables, including child race, maternal education,
log-transformed region- and inflation-adjusted household income,
household members, an interaction between household members
and income to account for nonproportional financial needs of a
household grow with additional members,72 marital status, mater-
nal age at enrollment, birth order, pregnancy smoking, pregnancy
alcohol consumption, maternal depression, maternal IQ, child
secondhand smoking exposure, and COI subscales (economics
and education). Adjustment for covariates that are only associ-
ated with the outcomes (i.e., precision variables) in a linear set-
ting is desirable, because it will improve the precision of the effect
estimates by reducing residual variance.73 Model 3, an extended
model, included additional adjustments for four covariates that
may be proxies for unmeasured confounders74: Prepregnancy
BMI, prenatal vitamin supplement intake, and breastfeeding may
serve as proxies for maternal preventative behaviors, and child
year of birthmay act as a surrogate for birth cohort effects.
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In a secondary analysis, we introduced cross product terms of
child sex and individual air pollution exposures in each window
in separate primary models (i.e., Model 2) and estimated the
interaction p-values as well as sex-specific associations. Several
sensitivity analyses were performed to verify the robustness of
our main findings. First, we implemented complete case analysis
as the primary approach. Although the data for most covariates
were nearly complete in the analytic data set, 16.2% of the
women did not have IQ measurement, and more than half of the
missingness in this covariate came from the GAPPS study. To
address the issue of missing data in maternal IQ and other covari-
ates, we began by verifying the assumption that the chance of
being a complete case solely depends on the observed covariates,
where data were missing at random (MAR).75 We constructed the
Receiver Operating Characteristic (ROC) curve by computing the
metrics of sensitivity and specificity at various threshold settings via
5-fold cross-validation76 and further estimated the area under the
ROC curve—a measure indicating the probability of models with
the observed covariates to correctly distinguish complete cases from
noncomplete cases.77 The area under the ROC curve indicated that
this MAR assumption was plausible, and both complete case analy-
sis and multiple imputation would give unbiased results. We thus
employed multiple imputation by chained equations (MICE) in the
minimal, primary, and extended models.75,78 Each missing value
was imputed 10 times with 100 iterations between each round of
imputation using predictive mean matching.79

Second, to investigate the validity of combining data of be-
havioral outcomes measured by different CBCL forms, we
replaced the raw Total Problems score with the standardized
z-score. Third, considering that children born earlier than 34 wk
are at higher risks of substantially lower IQ, attention, and execu-
tive function in comparison with those with a gestational week
37 and above,80 we restricted the sample to those born at gesta-
tional week 34 or later. Fourth, to investigate whether the associ-
ations of interest were confounded by the exposures in the other
windows, we simultaneously included NO2 or PM2:5 estimates in
all three trimesters in the primary models and further controlled
for postnatal exposures. In addition, we mutually adjusted for
exposures over the whole pregnancy and postnatal pollution esti-
mates. Fifth, to further confirm the identified critical exposure
windows, we fit fully adjusted constrained distributed lag models
(DLM) of biweekly air pollution predictions with varied degrees

of freedom (df) from 4 to 9. The prenatal windows were re-
stricted to 38 wk, and those born prior to gestational week 36
were imputed with the measurements in the latest available
biweekly window. The prenatal and postnatal biweekly exposures
were modeled separately with adjustments for average exposures
in the other period(s), considering the different biological mecha-
nisms linking child neurodevelopment with air pollution expo-
sures in utero and after birth. Sixth, to assess the linearity of the
relationships between air pollution exposures and outcomes, we
conducted generalized additive models with full adjustments in
the overall sample, as well as in strata by child sex. Finally, to
better understand the impacts of inherent heterogeneity across the
cohorts and sites and potential modified confounding by site on
the findings, we implemented three additional analyses: a leave-
one-cohort-out analysis, a leave-one-site-out analysis, and a set
of three models compared to the results of fixed effects models
(i.e., the primary analysis), including fixed effects models with
site–covariate interactions, mixed-effects models with a fixed
intercept and random slopes by site, and mixed-effects models
with site–covariate interactions. All analyses were conducted in
R (version 3.6.5; R Development Core Team).

Results

Characteristics of the Study Participants
The inclusion of participants from enrollment to outcome assess-
ment as well as the analytic sample sizes are illustrated in Figure 1.
Among the total analytic sample of 1,967 mother–child dyads, the
CANDLE, TIDES, and GAPPS studies contributed 53%, 27%, and
20% of the population, respectively (Table 1). Childrenwere on av-
erage 5.2 y of age (SD: 1.0) at outcome measurements, and there
was an approximately equal number of boys and girls. Nearly half
(48%) were identified as White by their parents and 39% as Black.
One-fifth of the children were living with at least one relative who
smoked. Mothers had an average age of 28.5 y (SD: 6.0) at enroll-
ment, 56% had a college degree and above, and 70% were married
or living as married. The median region- and inflation-adjusted
household income was $55,800USD (IQR: 62,500). Maternal IQ
was normally distributed, with a mean of 100 (SD: 17.4). The aver-
age t-score of CES-D or PROMIS was 48.5 (SD: 7.4), indicating a
typical level of maternal depression on average. Compared across

Figure 1. Shown are the inclusion of the three U.S. pregnancy cohorts in the ECHO-PATHWAYS Consortium (the CANDLE, TIDES, and GAPPS study) from
enrollment to the visit of child cognitive and behavioral assessments, as well as the analytic sample sizes remaining from the implementation of each exclusion crite-
rion. Note: CANDLE, Conditions Affecting Neurocognitive Development and Learning in Early Childhood; ECHO, Environmental Influences on Child Health
Outcomes; GAPPS, Global Alliance to Prevent Prematurity and Stillbirth; IQ, intelligence quotient; TIDES, The Infant Development and Environment Study.
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Table 1. Characteristics of participants from the three U.S. pregnancy cohorts in the ECHO-PATHWAYS consortium (the CANDLE, TIDES, and GAPPS
study) included in analysis.

Cohort

Total CANDLE TIDES GAPPS

(n=1,967) (n=1,035) (n=539) (n=393)

Child characteristics
Child age at outcome assessment (y) 5.2 ( ± 1:0) 4.4 ( ± 0:6) 6.4 ( ± 0:4) 5.6 ( ± 0:7)
Missing 47 2 3 42
Child sex
Male 963 (49%) 517 (50%) 251 (47%) 195 (50%)
Female 1,003 (51%) 518 (50%) 287 (53%) 198 (50%)
Missing 1 0 1 0
Child race
White 917 (48%) 264 (26%) 354 (68%) 299 (78%)
Black 752 (39%) 679 (67%) 64 (12%) 9 (2%)
Others 246 (13%) 68 (7%) 101 (19%) 77 (20%)
Missing 52 24 20 8
Birth order
Not firstborn 1,134 (58%) 629 (61%) 244 (46%) 261 (67%)
Firstborn 819 (42%) 406 (39%) 282 (54%) 131 (33%)
Missing 14 0 13 1
Year of birth
2007 85 (4%) 85 (8%) 0 (0%) 0 (0%)
2008 201 (10%) 201 (19%) 0 (0%) 0 (0%)
2009 246 (13%) 246 (24%) 0 (0%) 0 (0%)
2010 283 (14%) 283 (27%) 0 (0%) 0 (0%)
2011 468 (24%) 220 (21%) 197 (37%) 51 (13%)
2012 417 (21%) 0 (0%) 304 (56%) 113 (29%)
2013 175 (9%) 0 (0%) 38 (7%) 137 (35%)
2014 86 (4%) 0 (0%) 0 (0%) 86 (22%)
2015 6 (0%) 0 (0%) 0 (0%) 6 (2%)
Secondhand smoking exposure
No 1,523 (80%) 704 (68%) 465 (96%) 354 (91%)
Yes 378 (20%) 324 (32%) 19 (4%) 35 (9%)
Missing 66 7 55 4
Maternal characteristics
Maternal age at enrollment (y) 28.5 ( ± 6:0) 26.3 ( ± 5:6) 31.0 ( ± 5:5) 31.0 ( ± 5:5)
Missing 12 0 0 12
Region-, inflation-adjusted household income ($1,000) 55.8 [62.5] 31.8 [50.9] 101.7 [107.7] 86.0 [67.1]
Missing 77 46 24 7
Household members
2–3 410 (21%) 220 (21%) 124 (24%) 66 (17%)
4 767 (40%) 361 (35%) 247 (48%) 159 (42%)
5 435 (23%) 248 (24%) 95 (19%) 92 (24%)
≥ 6 311 (16%) 200 (19%) 47 (9%) 64 (17%)
Missing 44 6 26 12
Maternal education
Less than high school 167 (9%) 123 (12%) 32 (6%) 12 (3%)
High school/GED 683 (35%) 495 (48%) 88 (16%) 100 (26%)
College/technical school 644 (33%) 304 (29%) 169 (32%) 171 (45%)
Graduate or Professional degree 458 (23%) 112 (11%) 246 (46%) 100 (26%)
Missing 15 1 4 10
Marital status
Married/living as married 1,365 (70%) 572 (55%) 456 (85%) 337 (88%)
Single/living as single 589 (30%) 462 (45%) 82 (15%) 45 (12%)
Missing 13 1 1 11
Pregnancy smoking
Nonsmoker 1,828 (94%) 942 (91%) 514 (96%) 372 (97%)
Smoker 122 (6%) 92 (9%) 19 (4%) 11 (3%)
Missing 17 1 6 10
Pregnancy alcohol consumption
No alcohol consumption 1,760 (90%) 947 (92%) 472 (88%) 341 (90%)
Alcohol consumption 188 (10%) 87 (8%) 65 (12%) 36 (10%)
Missing 19 1 2 16
Pregnancy supplement intake
Never 260 (13%) 57 (6%) 181 (34%) 22 (6%)
Ever 1,675 (87%) 958 (94%) 356 (66%) 361 (94%)
Missing 32 20 2 10
Breastfeeding practice
Never 443 (23%) 375 (36%) 46 (9%) 22 (6%)
Ever 1,512 (77%) 658 (64%) 485 (91%) 369 (94%)
Missing 12 2 8 2
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cohorts, the CANDLE cohort comprised a larger proportion of
Black participants and low-income families, whereas the TIDES
participants were relatively more educated, with a higher house-
hold income. The analytic sample was similar to the overall sample
of participants at enrollment (Table S1). The distribution of child
Total Problems score was slightly right skewed (Figure S2) with a
median of 18 (IQR: 22), whereas child IQ was relatively normally
distributed with a mean of 102.6 (SD: 15.3). Variations in the dis-
tribution of child outcomes by cohort were observed (Table 2).

Air Pollution Exposures
NO2 levels were relatively stable and did not show a clear pattern
over time, with a mean ranging from 8.4 (SD: 3.8) to 9.0 (SD:
3.9) ppb in different pre- and postnatal windows (Table 3). The
correlation between NO2 in nonoverlapping windows was highest
between overall pregnancy and age 0–2 y (Spearman correlation:
0.84) and lowest between the first and third trimester (Spearman
correlation: 0.32) (Table S2). Prenatal PM2:5 was marginally
higher than the exposures in the two postnatal windows. The con-
centrations were 9.0 (SD: 2.3) lg=m3, 8.8 (SD: 2.0) lg=m3, and
8.4 (SD: 1.8) lg=m3 averaged over the pregnancy, 0–2 y, and
2–4 y, respectively. PM2:5 aggregated in shorter windows had a
greater variation than the exposures in the longer windows. There
was a medium to high correlation of PM2:5 across windows
(Spearman correlation: 0.50–0.89), mainly driven by between-
cohort correlations. The variation in PM2:5 was lower than that in
NO2, and PM2:5 and NO2 in the same period were moderately
correlated (Spearman correlation: 0.01–0.47). The NO2 concen-
trations in Seattle, San Francisco, and Minneapolis were greater
than those in Memphis, Rochester, and Yakima (Figure S3). In
contrast, Memphis had the highest PM2:5 level, followed by San

Francisco, Minneapolis, and Rochester. Seattle and Yakima in
Washington state had the lowest PM2:5 level.

Associations of Air Pollution Exposures with Child Total
Problems Score and IQ
NO2. Higher exposures to NO2 in the first trimester [b: 0.70;
(95% confidence interval (CI): 0.13, 1.27) per 2 ppbNO2], the
second trimester [b: 0.92 (95% CI: 0.31, 1.53) per 2 ppbNO2],
and averaged over the whole pregnancy [b: 1.24 (95% CI: 0.39,
2.08) per 2 ppbNO2] were associated with more behavioral prob-
lems in children (Table 4). There was no significant association
between prenatal NO2 and child IQ, and we found no significant
association between postnatal NO2 and either outcome.

PM2:5. We found an adverse association between PM2:5 in
the first trimester and behavioral functioning [b: 1.32 (95% CI:
0.12, 2.52)], but an insignificantly positive association with
child IQ [b: 0.80 (95% CI: −0:01, 1.62)]. For postnatal expo-
sures, each 2-lg=m3 increase in PM2:5 at age 2–4 y was associ-
ated with a 3.59 unit (95% CI: 0.35, 6.84) higher Total
Problems score and a 2.63 point (95% CI: −5:08, −0:17) lower
child IQ. Additionally, children with higher PM2:5 exposures at
age 0–2 y were estimated to have a 2.55-unit (95% CI: −0:16,
5.27) higher Total Problems score, and a 1.47-point (95% CI:
−3:40, 0.46) lower IQ on average, in comparison with their
counterparts with a 2-lg=m3 lower exposure; however, these
results had larger statistical uncertainty.

Sex Modification
From the interaction models with child sex, we found a stratum-
specific association between higher second trimester PM2:5 and

Table 1. (Continued.)

Cohort

Total CANDLE TIDES GAPPS

(n=1,967) (n=1,035) (n=539) (n=393)

Prepregnancy BMI (kg=m2) 27.1 ( ± 7:43) 28.0 ( ± 7:88) 25.5 ( ± 6:23) 27.0 ( ± 7:36)
Missing 45 3 14 28
Maternal IQa 100 ( ± 17:4) 94.6 ( ± 16:3) 109 (± 16:3) 108 ( ± 13:3)
Missing 328 12 111 205
Maternal depressionb 48.5 ( ± 7:4) 48.6 ( ± 6:9) 48.3 ( ± 8:2) 48.9 ( ± 7:8)
Missing 28 9 14 5
Child Opportunity Educational Index (Prenatal) −0:022 ( ± 0:073) −0:049 (± 0:064) 0.019 (± 0:072) −0:006 ( ± 0:067)
Missing 28 5 6 17
Child Opportunity Educational Index (0–2 y) −0:022 ( ± 0:073) −0:049 (± 0:063) 0.020 (± 0:073) −0:007 ( ± 0:066)
Missing 8 0 4 4
Child Opportunity Educational Index (2–4 y) −0:019 ( ± 0:074) −0:048 (± 0:065) 0.026 (± 0:070) −0:0028 ( ± 0:064)
Missing 16 2 9 5
Child Opportunity Economics Index (Prenatal) −0:045 ( ± 0:257) −0:133 (± 0:266) 0.057 (± 0:233) 0.051 ( ± 0:160)
Missing 28 5 6 17
Child Opportunity Economics Index (0–2 y) −0:042 ( ± 0:249) −0:131 (± 0:252) 0.060 (± 0:231) 0.054 ( ± 0:156)
Missing 8 0 4 4
Child Opportunity Economics Index (2–4 y) −0:034 ( ± 0:246) −0:126 (± 0:253) 0.073 (± 0:218) 0.063 ( ± 0:147)
Missing 16 2 9 5
Recruitment site
Memphis 1,035 (53%) 1,035 (100%) 0 (0%) 0 (0%)
San Francisco 135 (7%) 0 (0%) 135 (25%) 0 (0%)
Minneapolis 151 (8%) 0 (0%) 151 (28%) 0 (0%)
Rochester 135 (7%) 0 (0%) 135 (25%) 0 (0%)
Seattle TIDES 118 (6%) 0 (0%) 118 (22%) 0 (0%)
Seattle GAPPS 199 (10%) 0 (0%) 0 (0%) 199 (51%)
Yakima 194 (10%) 0 (0%) 0 (0%) 194 (49%)

Note: Shown in the table are mean (± SD), counts (percentage), and median (interquartile range); proportions were calculated in complete cases. BMI, body mass index; CANDLE,
Conditions Affecting Neurocognitive Development and Learning in Early Childhood; ECHO, Environmental Influences on Child Health Outcomes; GAPPS, Global Alliance to
Prevent Prematurity and Stillbirth; GED, general equivalency diploma; IQ, intelligence quotient; SD, standard deviation; TIDES, The Infant Development and Environment Study.
aMaternal IQ was measured by Wechsler Abbreviated Scale of Intelligence [the composite score of four subtests (Vocabulary, Similarities, Block Design, and Matrix Reasoning) from
the first edition in CANDLE, the composite score of two subtests (Vocabulary and Matrix Reasoning) from the second edition in TIDES and GAPPS].
bMaternal depression was quantified using the t-scores at the visit of child outcome assessments by either the Center for Epidemiologic Studies Depression Scale (CES-D) or the
Patient-Reported Outcomes Measurement Information System (PROMIS).
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more behavioral problems in girls [b: 1.50 (95% CI: 0.19, 2.81)
in girls, b: −0:35 (95% CI: −1:89, 1.18) in boys, Pinteraction:
0.026], and a stratum-specific association between higher second
trimester PM2:5 and a lower IQ in boys [b: −0:07 (95% CI:
−0:92, 0.79) in girls, b: −1:19 (95% CI: −2:18, −0:2) in boys,
Pinteraction: 0.040], although the results were null from the primary
analysis (Figure 2; Table S3). In both postnatal windows, there
was suggestive evidence of stronger estimated effects of PM2:5
on Total Problems score in girls than in boys; nevertheless, the
insignificant interaction terms indicated that the effect difference
between groups might be due to chance [0–2 y: b: 3.50 (95% CI:
0.61, 6.39) in girls, b: 1.72 (95% CI: −1:25, 4.70) in boys,
Pinteraction: 0.101; 2–4 y: b: 4.80 (95% CI: 1.25, 8.36) in girls, b:
2.74 (95% CI: −0:74, 6.23) in boys, Pinteraction: 0.121]. No sex dif-
ference in other associations was detected.

Sensitivity Analyses
First, to handle the missing data in all covariates in the primary
model, we constructed the ROC curve to verify the plausibility of
the MAR assumption. An average area under curve of 0.891
(95% CI: 0.868, 0.914) was calculated, suggesting that we had an
89.1% chance of correctly distinguishing a complete case from
one with missing data using the model with only covariates
(Figure S4). We then implemented MICE to impute the missing-
ness and show the results in Table S4. In comparison with the pri-
mary results, the point estimates obtained from MICE for the
associations with child Total Problems score were mostly attenu-
ated with a higher precision, whereas there was no clear pattern
for the changes in associations with child IQ. The positive associ-
ations between NO2 in the first trimester, the second trimester,
and the whole pregnancy and Total Problems score achieved sta-
tistical significance in both the complete case analysis and MICE

[first trimester: b: 0.51 (95% CI: 0.03, 0.98); second trimester: b:
0.61 (95% CI: 0.11, 1.11); whole pregnancy: b: 0.81 (95% CI:
0.17, 1.45)]. The positive association between first trimester
PM2:5 and IQ also gained a higher precision in MICE [b: 0.70
(95% CI: 0.05, 1.35)]. Second, we estimated a correlation of 0.99
between the raw Total Problems score and the standardized z-
score, and the conclusions remained the same after we replaced
the standardized z-score as the outcome (Table S5). Third, when
restricting the analytic sample to participants born at gestational
week 34 or later, the estimated direct effects of air pollution expo-
sures on both outcomes were very similar to the findings from the
primary analysis except for a slightly larger association with sig-
nificance between first trimester PM2:5 and IQ [b: 0.88 (95% CI:
0.06, 1.70)] (Table S6). Fourth, after simultaneously adjusting for
exposures across windows, we derived significant associations
between second trimester NO2 and Total Problems score with
smaller effect sizes than those from single exposure models
[adjustments for NO2 in other trimesters: b: 0.77 (95% CI: 0.01,
1.53); adjustments for NO2 in other trimesters and postnatal win-
dows: b: 0.79 (95% CI: 0.04, 1.54)] (Table S7). Stronger positive
associations between first trimester PM2:5 and IQ were also
detected when PM2:5 in other windows were included [adjust-
ments for PM2:5 in other trimesters: b: 0.84 (95% CI: 0.02, 1.66);
adjustments for PM2:5 in other trimesters and postnatal windows:
b: 1.29 (95% CI: 0.30, 2.29)]. Other significant associations in
the primary analysis were attenuated to null. Constrained DLM
results depended on the df and were generally not consistent with
our primary findings. The DLM with a df of 8 identified a critical
window of gestational week 4–5 where higher PM2:5 exposures
were related to more behavioral problems (Figure S5), which
agreed with the significantly positive association found in the first
trimester. DLMs using a df of 4 to 9 also indicated positive asso-
ciations between PM2:5 and IQ in slightly different windows

Table 2. Distributions of child total problems score and IQ in participants from the three U.S. pregnancy cohorts in the ECHO-PATHWAYS consortium (the
CANDLE, TIDES, and GAPPS study).

Outcomes Cohort n Min 1st quartile Median Mean (SD) 3rd quartile Max

Total problem score Overall 1,895 0 9 18 22.66 (18.52) 31 132
CANDLEa 1,005 0 10 19 23.72 (19.37) 33 132
TIDESb 533 0 9 18 21.82 (17.13) 29 96
GAPPS preschool form 262 0 9 15.5 20.96 (17.71) 28 110
GAPPS school-age form 95 0 9 14 20.93 (18.6) 27.5 94

IQ Overall 1,810 40 93 104 102.57 (15.27) 113 149
CANDLE 1,030 40 90 100 99.7 (14.85) 110 138
TIDES 425 55 97 107 105.96 (16.37) 118 149
GAPPS 355 52 99 108 106.86 (13.19) 115 136

Note: CANDLE, Conditions Affecting Neurocognitive Development and Learning in Early Childhood; ECHO, Environmental Influences on Child Health Outcomes; GAPPS, Global
Alliance to Prevent Prematurity and Stillbirth; min, minimum; max, maximum; SD, standard deviation; TIDES, The Infant Development and Environment Study.
aAll CANDLE participants completed the preschool form.
bAll TIDES participants completed the school-age forms.

Table 3. Distributions of NO2 and PM2:5 in each pre- and postnatal window in the overall analytic sample from the three U.S. pregnancy cohorts in the
ECHO-PATHWAYS consortium (the CANDLE, TIDES, and GAPPS study).

Exposures Window n Min 1st quartile Median Mean (SD) 3rd quartile Max

NO2 (ppb) 1st trimester 1,935 1.59 6.01 8.62 8.96 (3.92) 11.49 33.74
2nd trimester 1,934 1.44 5.66 7.97 8.45 (3.77) 10.82 29.15
3rd trimester 1,920 1.19 5.56 7.91 8.36 (3.82) 10.56 33.53
Overall pregnancy 1,932 1.74 6.36 8.35 8.62 (3.17) 10.65 27.29
0–2 y 1,894 1.63 6.79 8.78 8.71 (2.93) 10.53 26.37
2–4 y 1,894 1.61 6.46 8.68 8.59 (3.03) 10.50 25.93

PM2:5 (μg=m3) 1st trimester 1,935 1.82 7.33 9.43 8.95 (2.7) 10.63 21.32
2nd trimester 1,934 2.14 7.41 9.56 8.99 (2.74) 10.68 18.65
3rd trimester 1,920 2.26 7.41 9.51 9.09 (2.93) 10.97 20.33
Overall pregnancy 1,932 2.14 7.69 9.56 9 (2.32) 10.84 13.77
0–2 y 1,894 3.03 7.41 9.54 8.75 (2.01) 10.28 12.04
2–4 y 1,763 2.61 7.15 9.14 8.38 (1.79) 9.62 11.61

Note: CANDLE, Conditions Affecting Neurocognitive Development and Learning in Early Childhood; ECHO, Environmental Influences on Child Health Outcomes; GAPPS, Global
Alliance to Prevent Prematurity and Stillbirth; min, minimum; max, maximum; SD, standard deviation; TIDES, The Infant Development and Environment Study.
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within the range of gestation week 6–13, and a similar relation-
ship has been evident in the analysis with the exposure in the first
trimester, although the results are insignificant. Apart from these
findings, DLMs either showed associations that contradicted our
hypotheses and the primary results or displayed associations that
were null in our primary analysis, particularly in DLMs with a
high df. In addition, the smooth effect curves generated from
GAMs in the overall sample (Figure 3) and in each sex stratum
(Figure S6) generally did not indicate significant departures from
the conclusions of the primary and secondary analyses, although
the association between first trimester PM2:5 and Total Problems
score appeared to be predominantly driven by the exposure out-
liers in the high end. Last, leaving out the CANDLE cohort
(Memphis) presented the biggest impact on results of the leave-
one-cohort-out (Table S8) and leave-one-site-out (Table S9) anal-
yses: All the significant associations detected in the primary anal-
ysis became null. However, the exclusion of most other study
sites did not cause meaningful changes in the result. Comparing
the fully adjusted fixed effects models (i.e., the primary analysis)
to fixed effects models with site–covariate interactions as well as
mixed-effects models both with and without site–covariate inter-
actions, results were generally consistent. We found attenuation
in the association of first trimester PM2:5 with Total Problems
score and the associations of PM2:5 in age 2–4 y with both out-
comes in the mixed-effects models, but inclusion of site–covari-
ate interactions corrected these attenuations, raising the
possibility of site-specific confounding that is only apparent
when one of the sites with a smaller population is upweighted in
the mixed-effects model (Table S10).

Discussion
We used a large, combined sample from three sociodemographi-
cally diverse pregnancy cohorts situated in six U.S. cities to exam-
ine the associations of the two regulated air pollutants— NO2 and
PM2:5—with child behavioral problems and cognitive perform-
ance at age 4–6 y. Children whose mothers experienced higher
NO2 exposures during pregnancy, particularly in the first and sec-
ond trimester, were more likely to have behavioral problems.
Associations between prenatal NO2 and child IQ or postnatal NO2
with either outcome were not evident. We also found a positive
association of first trimester PM2:5 with Total Problems score;
nevertheless, this association needs to be interpreted with caution
because it may be driven by outliers. In addition, higher exposures
to postnatal PM2:5 when children were 2–4 y were associated with
poorer child behavioral functioning and cognitive performance.
The associations between PM2:5 and Total Problems score were
generally more pronounced in girls, and the inverse association
between second trimester PM2:5 and IQ was detected only in boys.
Conclusions remained largely unchanged with expanded covariate
adjustments and in most sensitivity analyses, but DLMs failed to
confirmmost critical windows being identified.

The adverse associations between prenatal NO2 exposure and
child behavior, particularly our findings for exposures in early- to
midpregnancy, align with similar evidence from several previous
studies. A previous CANDLE cohort study reported a 6% increased
risk of externalizing behavior for each 2-ppb higher prenatal
NO2.

39 A study in Japan found increased odds of attention prob-
lems and aggressive behaviors in children with higher prenatal
NO2 exposures.34 Similarly, another study by Ren et al. (2019)

Table 4. Associations of NO2 and PM2:5 in each pre- and postnatal window with child total problems score and IQ estimated from multivariable linear regres-
sions in the overall analytic sample from the three U.S. pregnancy cohorts in the ECHO-PATHWAYS consortium (the CANDLE, TIDES, and GAPPS study).

Modelb

NO2
a PM2:5

a

Total problems score IQ Total problems score IQ

nc b (95% CI) nc b (95% CI) nc b (95% CI) nc b (95% CI)

1st trimester
Model 1 1,823 0.8 (0.32, 1.28) 1,776 −0:8 (−1:17, −0:42) 1,823 1.07 (0.1, 2.04) 1,776 −0:67 (−1:45, 0.11)
Model 2 1,376 0.7 (0.13, 1.27) 1,423 0.28 (−0:1, 0.66) 1,376 1.32 (0.12, 2.52) 1,423 0.8 (−0:01, 1.62)
Model 3 1,347 0.58 (−0:02, 1.17) 1,391 0.37 (−0:03, 0.77) 1,347 1.28 (0.08, 2.48) 1,391 0.89 (0.05, 1.73)
2nd trimester
Model 1 1,822 0.94 (0.4, 1.48) 1,775 −0:95 (−1:33, −0:56) 1,822 0.58 (−0:36, 1.52) 1,775 −1:22 (−1:9, −0:53)
Model 2 1,376 0.92 (0.31, 1.53) 1,423 0.15 (−0:24, 0.54) 1,376 0.55 (−0:6, 1.71) 1,423 −0:62 (−1:36, 0.12)
Model 3 1,347 0.94 (0.3, 1.59) 1,391 0.16 (−0:25, 0.57) 1,347 0.41 (−0:83, 1.65) 1,391 −0:48 (−1:27, 0.31)
3rd trimester
Model 1 1,811 0.34 (−0:15, 0.82) 1,764 −1:31 (−1:71, −0:91) 1,811 0.25 (−0:64, 1.15) 1,764 −1:76 (−2:42, −1:1)
Model 2 1,368 0.27 (−0:31, 0.84) 1,415 −0:25 (−0:64, 0.14) 1,368 −0:54 (−1:48, 0.41) 1,415 −0:33 (−0:98, 0.32)
Model 3 1,339 0.3 (−0:29, 0.9) 1,383 −0:27 (−0:67, 0.13) 1,339 −0:99 (−2:05, 0.08) 1,383 −0:17 (−0:88, 0.54)
Overall pregnancy
Model 1 1,821 1.22 (0.54, 1.9) 1,774 −1:59 (−2:08, −1:1) 1,821 1.81 (0.25, 3.37) 1,774 −3:52 (−4:72, −2:32)
Model 2 1,376 1.24 (0.39, 2.08) 1,423 0.13 (−0:37, 0.63) 1,376 1.38 (−0:6, 3.35) 1,423 −0:26 (−1:53, 1.01)
Model 3 1,347 1.22 (0.34, 2.09) 1,391 0.17 (−0:35, 0.7) 1,347 1.03 (−1:27, 3.34) 1,391 0.18 (−1:25, 1.62)
0–2 y
Model 1 1,792 0.7 (−0:03, 1.43) 1,741 −1:55 (−2:14, −0:96) 1,792 2.09 (0.01, 4.16) 1,741 −6:03 (−7:8, −4:25)
Model 2 1,363 0.41 (−0:53, 1.34) 1,407 0.37 (−0:21, 0.95) 1,363 2.55 (−0:16, 5.27) 1,407 −1:47 (−3:4, 0.46)
Model 3 1,334 0.67 (−0:28, 1.62) 1,375 0.25 (−0:35, 0.85) 1,334 1.62 (−1:29, 4.53) 1,375 −0:8 (−3, 1.41)
2–4 y
Model 1 1,783 0.63 (−0:07, 1.34) 1,741 −1:51 (−2:07, −0:94) 1,691 3.45 (1.24, 5.67) 1,622 −8:31 (−10:33, −6:29)
Model 2 1,347 0.32 (−0:57, 1.21) 1,393 0.06 (−0:49, 0.61) 1,287 3.59 (0.35, 6.84) 1,311 −2:63 (−5:08, −0:17)
Model 3 1,318 0.44 (−0:46, 1.34) 1,361 0 (−0:56, 0.57) 1,262 2.55 (−0:82, 5.92) 1,284 −2:18 (−5, 0.64)

Note: BMI, body mass index; CANDLE, Conditions Affecting Neurocognitive Development and Learning in Early Childhood; CBCL, Child Behavior Checklist; CI, confidence inter-
val; ECHO, Environmental Influences on Child Health Outcomes; GAPPS, Global Alliance to Prevent Prematurity and Stillbirth; IQ, intelligence quotient; TIDES, The Infant
Development and Environment Study.
aNO2 and PM2:5 in each window were rescaled to 2-unit increments.
bMultivariable linear regressions were performed. Model 1 (the minimal model) minimally controlled for child sex, child age at outcome assessments, and study site. An indicator of
CBCL forms was additionally included in the analysis of Total Problems score. Model 2 (the primary model) was further adjusted for child race, maternal education, log-transformed
region- and inflation-adjusted household income, household members, an interaction between household members and income, marital status, maternal age at delivery, birth order,
pregnancy smoking, pregnancy alcohol consumption, maternal depression, maternal IQ, child secondhand smoking exposure, and Child Opportunity Index (the domains of educational
and economic opportunity) in corresponding windows with PM2:5 and NO2 exposures. Model 3 (the extended model) included additional adjustments for prepregnancy BMI, preg-
nancy supplement intakes, breastfeeding, and child year of birth.
cn is the analytic sample size for each model.
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reported a positive association between prenatal exposures to NO2
and total difficulties and suggested that NO2 in the first trimester
may be more deleterious.32 Moreover, there is increasing evidence
from population studies linking prenatal air pollution exposures,
including NO2, with attention deficit hyperactivity disorder
(ADHD) and autism spectrum disorders.10,11 Prenatal air pollution
may interfere with fetal neurodevelopment by inducing oxidative
stress and inflammation or altering the epigenetic programming in
the placenta or fetus.12–14,81,82 However, we observed null associa-
tions between postnatal NO2 and child behaviors, which was
inconsistent with our previous finding in CANDLE,39 as well as
the two studies combining multiple cohorts in Spain.30,83 Our
results for the association between NO2 exposures in either prena-
tal or postnatal windows and child IQ were also null, paralleling
those from the prior CANDLE study using NO2 estimates from a
national annual model,27 two other studies in Europe,43,84 and one
study in Taiwan.36 However, significant adverse associations were
reported in five other European studies.31,41,85–87 The disparity in
findings may be driven by variations in the air pollution prediction
models, the exposure levels, the exposure duration (short-term vs.
long-term), the exposure locations (school vs. home), the source of
exposure (indoor vs. outdoor), outcome assessment, underlying
susceptibility in study populations, or confounder selection.

The detected positive relationship of first trimester PM2:5 with
child Total Problems score was in agreement with findings from
several existing studies with prenatal PM exposures in mainland
China,32 Japan,34 Korea,33 and Mexico City.37 Some of our sensi-
tivity analyses suggested a potential positive association between
first trimester PM2:5 and IQ, such as MICE and DLM, although
the result was insignificant in the primary analysis. We only
know of two previous studies measuring the effect of PM in spe-
cific trimester(s) on child cognitive performance. A study in

Massachusetts detected no association between third trimester
PM2:5 and child IQ,28 though the associations with first and sec-
ond trimester exposures were not evaluated, and a study in
Taiwan reported a null relationship of first trimester PM10 and
child neurodevelopmental scores at 6 and 18 months.36 Using a
distributed lag modeling approach, another study showed that
children in Boston with higher PM2:5 exposure at 31–38 gesta-
tional weeks had a lower IQ at age 6,25 the critical windows of
which differed from our findings from DLM. This positive asso-
ciation between first trimester PM2:5 and IQ contrasts with our
hypothesis, and its interpretation may reflect the following con-
siderations: first, this protective association may suggest potential
selection bias from multiple sources. One is the enrollment crite-
rion of women with low medical risk pregnancies in the
CANDLE and TIDES cohort, and another is the fact that the out-
comes are conditioned on live birth.88,89 When the analytic sam-
ple was restricted to participants with a gestational week of 34
and above, this association became stronger, indicating that con-
straint on gestational age may also induce bias. Second, this
result was largely attenuated when we excluded participants in
Yakima, Washington, from the analysis. A potential explanation
is that the spatiotemporal model may generate less accurate pre-
dictions in such a region where wildfires and agricultural burning
are major sources of particulate pollution.

The associations with the greatest magnitude in our analysis
were found between postnatal PM2:5 and child behavior, particu-
larly exposures at age 2–4 y. A similar conclusion was drawn in a
German study by Fuertes et al. (2016),29 which reported an
increased risk of hyperactivity/inattention in adolescents with
higher exposures of PM2:5 mass and absorbance at 10 y and 15 y
address. However, in an analysis from the Project Viva cohort,
significant associations between postnatal PM2:5 averaged in

Figure 2. Shown are the estimated effects of air pollution exposures on child Total Problems score and IQ by child sex (male vs. female) in participants from
the three U.S. pregnancy cohorts in the ECHO-PATHWAYS Consortium (the CANDLE, TIDES, and GAPPS study). NO2 and PM2:5 in each window were
rescaled to 2-unit increments. In addition to the interaction term between individual air pollution exposures in each window and child sex, the linear regressions
were adjusted for child sex, child age at outcome assessments, study site, child race, maternal education, log-transformed region- and inflation-adjusted house-
hold income, household members, an interaction between household members and income, marital status, maternal age at delivery, birth order, pregnancy
smoking, pregnancy alcohol consumption, maternal depression, maternal IQ, child secondhand smoking exposure, and Child Opportunity Index (the domains
of educational and economic opportunity) in corresponding windows with PM2:5 and NO2 exposures. An indicator of CBCL forms was additionally included
in the analysis of Total Problems score. The p-value indicates the statistical significance of the interaction term. The symbols of triangles and circles indicate
the effect estimate, the error bars show 95% confidence intervals, and the dotted lines show null values. Numeric data (including sample size for each associa-
tion) are shown in Table S3. Note: CANDLE, Conditions Affecting Neurocognitive Development and Learning in Early Childhood; CBCL, Child Behavior
Checklist; ECHO, Environmental Influences on Child Health Outcomes; GAPPS, Global Alliance to Prevent Prematurity and Stillbirth; IQ, intelligence quo-
tient; TIDES, The Infant Development and Environment Study.
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Figure 3. Shown are the graphic examination of the linearity of associations of NO2 and PM2:5 in each window with child Total Problems score and IQ from
the fully adjusted generalized additive models in the overall analytic sample of three cohorts. The models were controlled for child sex, child age at outcome
assessments, study site, child race, maternal education, log-transformed region- and inflation-adjusted household income, household members, an interaction
between household members and income, marital status, maternal age at delivery, birth order, pregnancy smoking, pregnancy alcohol consumption, maternal
depression, maternal IQ, child secondhand smoking exposure, and Child Opportunity Index (the domains of educational and economic opportunity) in corre-
sponding windows with PM2:5 and NO2 exposures. An indicator of CBCL forms was additionally included in the analysis of Total Problems score. The p-value
indicates the statistical significance of the association. The n indicates the analytic sample size. Black solid lines represent the potential nonlinear associations,
gray bands are 95% CIs, and red dotted lines show null values. Note: CANDLE, Conditions Affecting Neurocognitive Development and Learning in Early
Childhood; CBCL, Child Behavior Checklist; CI, confidence interval; ECHO, Environmental Influences on Child Health Outcomes; GAPPS, Global Alliance
to Prevent Prematurity and Stillbirth; IQ, intelligence quotient; TIDES, The Infant Development and Environment Study.
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different windows and teacher-rated behavioral problems and ex-
ecutive functions were detected only in minimally adjusted mod-
els.90 Our estimated effects of postnatal PM2:5 on child IQ were
also relatively strong. This result is consistent with two studies
based on multiple cohorts in Spain, which reported a reduced
growth in work memory among children 7–11 y of age with
higher PM2:5 exposure from commutes or at school.30,83

Nevertheless, a study in Upstate New York with relatively low
air pollution exposures showed mixed associations between
PM2:5 assessments and risk of failure on developmental screening
using Ages and Stages Questionnaires at 8 to 36 months of age.26

Another study in Massachusetts found a null association between
PM2:5 in early childhood and child IQ at age 8 y.28 In comparison
with younger children, 2- to 4-y-old children are more likely to
stay outdoor for longer periods and are usually more active,
which may increase their susceptibility to air pollution.91

According to a conceptual framework proposed by Tulve et al.
(2016), postnatal air pollution interplays with inherent character-
istics, activities and behaviors, and other stressors from built, nat-
ural, and social environments and influences child learning,
communication, response to stress, and general psychological
well-being.92 In addition, laboratory and imaging studies have
shown that the number of neural connections explodes in the first
and second year of life,93 and brain size increases 4-fold, reach-
ing 90% of adult volume by age 6 y.1,94–97 Inhaled particles can
invade deep in the lung and translocate along the olfactory nerve
into the olfactory bulb.22 A pilot study in healthy children and
young dogs similarly exposed to high air pollution in Mexico
City showed a significant up-regulation of inflammatory markers
and histological changes in target brain areas.98 Studies in ani-
mals also observed inflammatory responses in the prefrontal cor-
tex and the striatum after air pollution exposure—the regions
related to executive functions such as working memory.99–103

These findings provide strong mechanistic support for the hy-
pothesis that inhaled air pollutants may trigger oxidative stress
and promote inflammatory markers across the impaired blood
brain barrier, which result in microglial activation and elevated
cytokine expression, and in turn cause CNS damage relevant for
behavioral and cognitive function.

Our results somewhat suggested stronger associations between
PM2:5 and child behavioral functioning in girls, particularly with
postnatal PM2:5. Neither the study in Germany29 nor the previous
analysis in the CANDLE cohort39 found sex differences in the
associations between postnatal PM and child behaviors.
Nevertheless, the study in Mexico City reported a stronger associ-
ation between first trimester PM2:5 and reduced adaptive skills in
boys. In addition, we found an inverse association between second
trimester PM2:5 and IQ only in boys, which agrees with much
existing literature showing more pronounced findings in
boys,25,30,35,41–43 but disagrees with the three U.S. studies with
null findings.26,27,104 Research has identified several sex differen-
ces in neurodevelopment, including morphological, physiological,
and chemical differences.40 Although animal studies have shown
that males are more susceptible to airborne metals than females
are, which is potentially explained by sex-specific altered dopa-
mine function,105 other evidence from laboratory science support a
protective mechanism for boys via neuroprotective effects of
androgens against oxidative stress.106

Our study has several important strengths. First, we combined
three pregnancy cohorts into a large analytic sample with high
sociodemographic diversity and controlled for several important
confounders harmonized across cohorts, including individual and
neighborhood SES indicators,107 maternal depression, and mater-
nal IQ. The approach of pooling data helps leverage the spatio-
temporal contrast in air pollution assessments and strengthens the

external generalizability of the study results by increasing the di-
versity of participants. Second, we used spatiotemporally
resolved air pollution predictions from a well-validated modeling
approach based on individually geocoded residential addresses in
six U.S. cities across multiple years, allowing us to exploit small-
scale spatial variability in the pollutant surfaces over several win-
dows in both pre- and postnatal periods. Last, we provided rigor-
ous training for examiners and implemented robust protocols to
collect standardized objective assessments of child cognitive per-
formance. The data for both outcome measures were collected
using standardized and validated neuropsychological testing tools
and went through strict quality control.

There are also limitations to be acknowledged. One is the
parent-report method for ascertaining child behaviors. Previous
research has shown that parents report child psychological prob-
lems more often and of greater severity than teachers, suggesting
combined reports from multiple sources may improve reliabil-
ity.108 However, the study with participants from the Adolescent
Brain Cognitive Development cohort in the United States found
little psychometric evidence for maternal psychopathology bias-
ing reports of child behavior problems.109 Use of parent report
alone is common in epidemiological studies, given the ease of
data collection. Another limitation is the heterogeneity among the
three studies and sites in terms of exposure levels, air pollution
compositions, frequency of address data collection, outcome
assessment instruments, examiners, and measurement methods
for covariates, which could induce measurement errors of various
magnitudes. We performed several sensitivity analyses to investi-
gate the impacts of certain heterogeneities on the detected associ-
ations in a pooled sample. Although the results from our leave-
one-cohort-out and leave-one-site-out analyses indicated that the
CANDLE study contributed the most to the findings, likely due
to its large sample size, the comparisons between fixed-effects
models and mixed-effects models with or without site–covariate
interactions suggested that the roles of site heterogeneity and
potential site-specific confounding on the estimated associations
were relatively minor. The third concern is the potential inaccur-
acy in air pollution assessments. Our prediction model, like other
modeling approaches, may produce complex forms of measure-
ment error that can distort the true associations.110,111 The current
analysis did not account for indoor exposures or exposures in the
other locations, such as day care, preschool, or daily commutes.
We also lacked other air pollutants that were linked with child
neurodevelopment in previous research, such as black carbon,
ozone, PAHs, and sulfur dioxide.10,11 Moreover, collinearity of
exposures across windows may cause inaccurate identification of
critical window; we thus implemented constrained DLM to verify
our results. However, the results from DLMs were largely
unmatched with our primary findings. Defining exposure win-
dows a priori is particularly appealing, because the results are
easy to interpret and to compare, and the evidence can be used to
inform interventions directly. Certain clinical problems are likely
to cluster in different trimesters, such as teratogenesis112 or mis-
carriage113 in the first trimester and bleeding114 in the third tri-
mester. We also expect tremendous physical, behavioral, social,
and emotional advancements to occur in children when they turn
age 2. However, these predefined windows may not reflect many
important developmental milestones115 nor correspond to rele-
vant vulnerable periods of neurodevelopmental impairments. On
the contrary, the results from DLMs are very sensitive to model
specification, and they could generate spurious significant win-
dows or fail to capture windows when the smoothness is imposed
incorrectly.116 In such manner, neither method has generated com-
pletely valid conclusions, and the sensitive exposure periods iden-
tified by our analysis merit further study. Furthermore, we were
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missing 16% of the maternal IQ measurements. Based on our
assessment of the ROC curve, the assumption ofmissing at random
was likely valid, and the results from both the complete cases anal-
ysis and the multiple imputation were considered robust.75,117

Because multiple imputation may not be readily compatible with
DLMs or generalized additive models, we employed it as an alter-
native approach to verify the findings from the complete cases
analysis. Nevertheless, we cannot rule out potential selection bias
with confidence, given the discrepancy of results from the two ana-
lytic approaches. In addition, residual confounding may exist.
Previous studies found adverse individual and joint neurobehavio-
ral associations with transportation noise and traffic-related air pol-
lution in children,31,118 but we did not control for noise due to data
unavailability. Last, our findings may need to be interpreted with
caution owing to themultiple comparisons.

Despite these limitations, our study extends earlier findings
that have raised concern of reduced behavioral functioning and
cognitive performance in children following NO2 and PM2:5 expo-
sures in early life. We used highly refined exposure assessments
across several pre- and postnatal windows in U.S. settings with
modest air pollution levels. Aside from filling the methodological
gaps in the current literature, our study explores the most relevant
exposure window, compares the findings across two neurodeve-
lopmental measures, and highlights the extra vulnerability to dif-
ferent neurodevelopmental impairments in each sex when exposed
to air pollution. Enhanced understanding of population vulnerabil-
ities to common ambient air pollutants are necessary to ensure that
regulatory policies provide adequate protection for all.
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